The New Standard in Reliability

The highest stability in its class and excellent equimolar response yields truly reliable results.

High-Efficiency Redox Cell Provides Stable Reactions

The horizontal redox cell, an industry first, ensures an ample reaction time and reaction zone within the cell, promoting the sample's redox reaction. As a result, it provides highly stable analyses even when samples are loaded with a high column flowrate. Additionally, nitrogen gas (makeup gas), which is loaded together with the sample, prevents detector contamination due to column deterioration.

Excellent Long-Term Stability

The newly designed high efficiency redox cell enables long-term stable analysis. We evaluated the stability of the response for four sulfur compounds commonly found in gasoline. Measurements were performed for a period of 16 days. Stability was evaluated by measuring the fluctuations of the target compound's response in relation to the internal standard (Diphenyl Sulfide); this is in accordance with ASTM D5623. The relative standard deviation for peak area was 1.2% to 1.9%, this is impressive stability for a SCD.

Using the analytical conditions noted in ASTM D5623, various sulfur compounds (Each compound has a sulfur concentration of 10 ppm (w/w) ) were measured, and the relative area ratio for each component was calculated with respect to the area value for diphenyl sulfide. A favorable equimolar response was obtained.

High Equimolar Response

The relative area ratio of sulfur compounds was evaluated via ASTM D5623, which involves the analysis of sulfur compounds in gasoline. The area ratio of these compounds to diphenyl sulfide was determined and our results show that regardless of compound structure, Nexis SCD-2030 gave a similar response. This is desired because we want our detector to give similar or equivalent response (equimolar response) for the same amount of compound regardless of its chemical structure.

Top of This Page